

Microturbine Advantages

- Clean electricity
- Very low emissions
- Quiet operation
- Low maintenance
- Long engine life
- High system efficiency
- Multi-fuel operation
- Cogeneration heat

Why a Microturbine?

- Low life cycle cost
 - Competitive first cost
 - Low operating costs
 - Low maintenance
 - Longer life
- Low emissions
 - Compared to piston engines
 - Comparable to fuel cells?
- Readily adaptable to many CHP applications
 - Domestic hot water
 - Space heating
 - Absorption cooling
 - Desiccant dehumidification

Example Microturbine Specifications

- 70kWe model
- Has 130% peaking power capacity on cold days (92 kWe)
- High efficiency
 - 29% LHV electric (28% w/booster)
 - Up to 70% total with cogeneration
- Low emissions with natural gas
 - <9 ppmv NOx @ 15% excess O₂ (typically 4-5 ppm)
- 8,000 hour maintenance interval
- 80,000 hour engine life

Example Microturbine Features

Patented Combustor

- Dry Low NOx
- Exceeds current stringent environmental regulations

Fuel Gas Booster

- Long-life
- Fully integrated
- IR technology already used in thousands of critical industrial applications

Integrated Heat Recovery

- Small footprint
- Controllable output level)

Patented Recuperator

- · Essential to high efficiency
- Military grade
- Designed for 80,000 hour life

Two-Shaft Engine

 Reduces stress for longer life

Mechanical Shaft Output

 High efficiency platform

Proven Generator Technology

- Well understood by utilities
- Same technology used by utilities to power the grid

System Cycle Diagram

Codes Used in Design

- Uniform Mechanical Code
- National Fuel Gas Code ANSI 2223.1/NFPA 54
- NFPA 37 Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines
- UL2200 Stationary Engine Generator Assemblies Also (where applicable):
- UL1741 Power Converters / Inverters
- Existing Interconnect Standards
 - NY: PSC SIR
 - CA: Rule 21
 - Future? IEEE SCC21 P1547 National Interconnect

Facility-Microturbine Integration

Typical Indoor Installation

Compact Footprint Enclosure

Basic Induction Generator Configuration

- Industry standard generator technology
- Well understood by utilities
- Clean, reliable technology
- Easily operated as multiple units

Ground Faul Protection

As Reg.

Key:

Device	
<u>Number</u>	<u>Definition</u>
4	Master Contactor
40L	Contactor Overload
5	Stopping Device
27	Undervoltage Relay
27/59 G	Ground Overvoltage
32	Reverse Power Relay
47	Phase Sequence
59	Overvoltage Relay
81 O/U	Over/Under Frequency
86	Lockout Relay
80	Lоскоит Relay

Directly Integrated Heat Recovery System

- Built into exhaust plenum immediately after recuperator
- Designed for heating water
 - 6 to 26 gpm
 - Up to 200°F water output
 - Suitable for potable water up to 125 psig
 - Example: 273,000 BTU/hr
 @ 20GPM with inlet water
 temperature of 150°F

- Heat can also be recovered directly from exhaust
 - About 400°F after recuperator
 - Very low emissions, perhaps cleaner than air input!

Air / Exhaust Handling

- Independent inlet air ducting
 - 1100 scfm typical
 - Cool, filtered air preferred
 - Max duct pressure loss = 0.25" H2O
- Exhaust
 - Dry, low-NOx technology
 - NOx: <9 ppmv @15% O2<0.045 lbm/hr (<20 gm/hr)
 - CO: <9 ppmv @15% O2 <0.045 lbm/hr (<20 gm/hr)</p>
 - Max duct pressure loss = 0.75" H2O

Built-In Industrial Controls

- Industrial pedigree
- Serial communications interface
- Discrete control interface
 - Automatic start-stop
 - Facility fault input
 - Remote emergency stop
- Ready to be integrated into building Energy Management System (EMS)

